Design Considerations for Monochromatic Imagers and Imaging Spectrographs

Jeff Baumgardner

CEDAR Student Workshop Santa Fe June 27,2004

SAR ARC (6300A) Millstone Hill

Low Latitude Airglow Depletions from El Leoncito Argentina

Mesospheric Gravity Waves (5577A)

Imaging Spectrograph (~5580A-7100A)

S

6563A

Typical Imager Installation Arequipa (1994 – 2000)

Imaging Spectrographs Installed at Tromso(winter 2002-2003)

Optical path of an All Sky imager built at Boston University

Collimating vs Telecentric Systems

Details of Collimating System

Simple Field Lens

Field Lens with Field Flattener

Details of Collimating System (cont.)

Details of Telecentric System

Some Basic Characteristics of Interference Filters

Some Basic Characteristics of Interference Filters (cont.)

$$\lambda = \lambda_{\max} \left[1 - \left(\frac{n_o}{n_e} \right)^2 \sin^2 \phi \right]$$

Design Choices

 How does the size of the detector, the choice of the front objective lens, and the size of the filter affect the sensitivity of the complete system?.....OR......

Does Size Matter?

Design Choices (cont.) A few terms to be familiar with:

- F ratio or F number (F/) = Focal Length/ Diameter
- Angle-aperture product or Grasp
- Chromatic aberration (focus shift with wavelength)
- Astigmatism
- Field curvature
- Back focal length

- Consider two systems:
- System1:
- 16mm fl F/2.8 fisheye (40mm dia. image)
- 1k by 1k, 24 micron pixel CCD
- System2:
- 8mm fl f/2.8 fisheye (23mm dia. Image) 1k by 1k 13 micron pixel CCD

- In both systems the images from the fisheye lenses are reimaged to just fit onto the CCDs.
- In both systems the angular size of the pixels are the same when projected onto the sky.
- In System 1 and System 2 the F/ of re-imaging lens will be ~F/1.64
- However, System 1 has an aperture of 16mm/2.8 = 5.7mm while System 2, has an aperture of 8mm/2.8 = 2.8 which is 2 times smaller (0.25 in area) and therefore, 4 time less sensitive!

- What if the smaller chip is used with the larger fisheye?
- 40mm dia. Image has to be reduced to 13mm to fit
- F/ of the re-imaging lens has to be 13/40 x 2.8 or f/0.9
- Same sensitivity as previous example with larger chip

- What is the filter size and bandwidth needed in a collimating system?
- Angle at filter (and therefore bandwidth) is a function of size of image and the focal length of collimator
- Size of filter is a function of F/ and focal length of collimator
- Once filter diameter is fixed, all other parameters follow

- Choose 100mm dia. Filter
- Both systems need an F/2.8 100mm dia. Collimator FL=280mm
- Max angle for system 1= arctan(20/280)= 4.1 deg. Minimum filter bandwidth = 12A or so
- Max angle for system 2 = arctan(12/280)= 2.5 deg. Minimum filter bandwidth = 4A or so (this filter is beyond the state of the art and would be prohibitively expensive!)

 If collimator in system 2 is reduced to 50mm dia. and 140mm FL, the angles are the same as system 1 and the filter can be 50mm dia. 12A FWHP (much less expensive!) Remember system 2 is 4 times less sensitive than system 1.

 If 75mm dia. filters are used in system 1 the angle at the filter would increase to 5.4 deg. and the FWHP to 18A or so.

- Telecentric systems have filters the same size as the image.
- Typical 24mm fl F/4 system uses 20A HPFW filters
- "grasp" is similar to system 1 above

Imaging Spectrograph Schematics

"COTIF" SPECTROGRAPH

Parameters for COTIF Spectrographs

ANGLE OF INCIDENCE = -11.0 BLAZE ANGLE = 11.5 ANGLE BETWEEN THE INCIDENT AND THE EXIT BEAM = 45.0 LINE DENSITY = 600.0 lines/mm DIFFRACTION ANGLE RANGE = 8.0

ORDER	MIN	MAX	DISP (A/DEG)	DISP (A/pix)	OCURRENCE
1	5153.2	7080.9	240.9615	1.8825	4
2	2576.6	3540.4	120.4807	0.9413	0

ANGLE OF INCIDENCE = -11.0 BLAZE ANGLE = 11.5 ANGLE BETWEEN THE INCIDENT AND THE EXIT BEAM = 45.0 LINE DENSITY = 600.0 lines/mm DIFFRACTION ANGLE RANGE = 8.0

Grating Equation

For reflection Gratings:

$m\lambda = d(sin\beta' + sin\beta)$

For Grisms:

$m\lambda = d(n-1)(sin\beta' + sin\beta)$

Slit Curvature $m\lambda = d (sin\beta' + sin\beta) (cos\alpha)$

FIGURE 5.7(b). Radiation at oblique incidence from a straight slit. Mercator projection of the unit sphere, showing the formation of a parabolic image of the slit.

COTIF Spectra from Cornish Maine

HITIES Schematic

Figure 4

: 2

Some Really Useful Books!

Don't hold you breath for this book!

